Ornstein-Uhlenbeck processes indexed by the circle
نویسندگان
چکیده
منابع مشابه
Multivariate Generalized Ornstein-Uhlenbeck Processes
De Haan and Karandikar [12] introduced generalized Ornstein–Uhlenbeck processes as one-dimensional processes (Vt)t≥0 which are basically characterized by the fact that for each h > 0 the equidistantly sampled process (Vnh)n∈N0 satisfies the random recurrence equation Vnh = A(n−1)h,nhV(n−1)h + B(n−1)h,nh, n ∈ N, where (A(n−1)h,nh, B(n−1)h,nh)n∈N is an i.i.d. sequence with positive A0,h for each ...
متن کاملMarkov-modulated Ornstein-Uhlenbeck processes
In this paper we consider an Ornstein-Uhlenbeck (ou) process (M(t))t>0 whose parameters are determined by an external Markov process (X(t))t>0 on a nite state space {1, . . . , d}; this process is usually referred to as Markov-modulated Ornstein-Uhlenbeck (or: mmou). We use stochastic integration theory to determine explicit expressions for the mean and variance of M(t). Then we establish a sys...
متن کاملGeneralized fractional Ornstein-Uhlenbeck processes
We introduce an extended version of the fractional Ornstein-Uhlenbeck (FOU) process where the integrand is replaced by the exponential of an independent Lévy process. We call the process the generalized fractional Ornstein-Uhlenbeck (GFOU) process. Alternatively, the process can be constructed from a generalized Ornstein-Uhlenbeck (GOU) process using an independent fractional Brownian motion (F...
متن کاملThe Stationary Distributions of Doubly Skew Ornstein-Uhlenbeck Processes and Markov-modulated Skew Ornstein-Uhlenbeck Processes
In this paper, we consider the stationary density function of the doubly skew Ornstein-Uhlenbeck process. We present the explicit formula for the stationary density function and show that this process is positive Harris recurrent and geometrically ergodic. We expand our method to the more general cases in which the multiple parameters are present and we try to consider the stability of the skew...
متن کاملInfinite dimensional Ornstein-Uhlenbeck processes driven by Lévy processes
We review the probabilistic properties of Ornstein-Uhlenbeck processes in Hilbert spaces driven by Lévy processes. The emphasis is on the different contexts in which these processes arise, such as stochastic partial differential equations, continuous-state branching processes, generalised Mehler semigroups and operator self-decomposable distributions. We also examine generalisations to the case...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Annals of Probability
سال: 1998
ISSN: 0091-1798
DOI: 10.1214/aop/1022855640